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Soliton bistability in triply doped fiber with saturating nonlinearity
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Bistable, in the sense of KaplgRhys. Rev. Lett551291(1985], soliton solutions are obtained and studied
in the averaged model of the triply doped fiber with saturating nonlinegf4063-651X97)10010-1
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INTRODUCTION wheree{) (j=1,2,3) are the Kerr coefficients for the non-

Recently, Enns and Edmundspi obtained and studied linear per.m.ittivity of the dopants relateq to the respective
the properties of bistablén the sense of Kaplaf2]) solitons Kerr coefficients foa}he nonl(|jr)1ear refr_actlve m_dex change of
in a triply doped fiber with saturating nonlinearity. In their the dopants by5] e3”=2non;”, no being the linear refrac-
work the saturation coefficients of the dopants are relatedive index of the fiber core. Herd (j=1,2,3) are the satu-
among themselves in a stringent manner in order to fulfill theration intensities of the dopants. Note that the intensifgs
necessary propertigput forth by Enns, Rangnekar, and Ka- have to be given in ¥/m?, with the corresponding units for
plan [3]) of the nonlinear functiorf(l), | being the light n, ande, while calculating the physical quantities related to
intensity, in the evolution equation. In addition to that, thethe soliton pulse.
pulse evolution equation used by them is an unaveraged one, As usual we represent the electric-field envelope ampli-
which is not desirable since the transverse distribution of théude in the form
modal field in the fiber is not uniform over the entire cross
section. Because averaging changes the form of the nonlinear
functionf(l) [4,5] and according to Kaplaf2] the existence
of bi;table solitons crucially depends on the derivative of E(x,y,zt)=eR(NA(z,t)exd —i(wot—Bo2)], ()
f(1) it becomes necessary to study the averaged model.

Consider a monomode fiber with circular cross section. .
Let z be the direction along the fiber. The nonlinear wavewheree is the unit vector in the direction of polarization
equation in the core region of the fiber can be written as is the carrier frequencyg, is the propagation constam(r)
is the mode function giving the transverse distribution of the
field in the mode, and\(z,t) is the slowly varying complex
1 #°DNt envelope amplitude of the pulse. In order to derive the dif-
) ' (D ferential equation governing pulse propagation in the me-
dium described by Eqgs(2)—(4) we adopt the customary
slowly varying envelope approximatid8VEA). Further, as-
’suming the temporal dispersion of the dielectric permittivity

to be small, we expand the electric fielqt—t’) in Eq. (2)
into a Taylor series ih’ [6] and use the resulting expression
- = o to obtain the required series fﬁL(t). We then differentiate
D== fo e(t)E(t—t")dt’, 2 this new expression db"(t) twice with respect ta to obtain
9°D'/gt%. We also differentiateDN'(t) twice to obtain
while 92DNL/ gt2. Now substituting forE [taking into account Eq.
(5)], *D“/4t2, and 9>DNYat? in Eq. (1), using the condi-
tion of the SVEA[6], and averaging the resulting equation

over the fiber cross section we arrive at the dimensionless
evolution equation for the normalized complex envelope am-

where D' and D' are the linear and the nonlinear parts
respectively, of the electric induction vectdr. D" is given
by

DNt=ey, (|E]?)E, 3

where e is the linear permittivity and:, is the intensity-
dependent nonlinear permittivity. As in the case of a sing|

dopant, for the given case of a triply doped fiber, we take th litude q(¢, 7).
nonlinear permittivity in the form 1
iq:+ >q,.+f(|al»q=0, 6
en((EP=3 —o @
" =11+ gy where
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In(1+|g®) 4 In(1+ y4q|?) In order to obtain the soliton solution for the given initial
f(|ql?)=1— ———+t—|1- —2) conditions¥ =" (r=0) andd¥/dr=0 at 7=0 we have
|al 71 v1ld| to integrate Eq(12) for a given set of parametess , w, v,
(14 2 ande. The nonlinear addition to the propagation consjant
I In(1+ y[al*) ‘ (7)  required for the integration of E¢12), is obtained by taking
Y2 ¥,|q|? into account the first integral of Eq12) and the boundary
conditions(11):
The dimensionless variables in E¢6) and(7) are given by
@@ p e 1 Iz
_ A emds ) B=14 = —— G| Fa(Wo)+ —Fa(¥o)
q= \/Ié_l) &= c ) Y1 Y2 0 Y1
€
- _2F3(\I’o)]' (13
ong 1 z Y2
T= T t—— (8
c(—Kyo)\ vy where
and
Yoln(1+ &)
2) |(D) 3) |0 FalWo)= f 3 ’
N3 s _ n3”| s 9 0
k=S M S m 2 e 9)
nz s n; s

The averaging is done by taking the first moment of the E (W)= Yoln(1+ Ylf)d
differential equation, obtained after the above-mentioned 2(Wo)= o é ’
substitutions, with respect to the transverse field distribution

R(F), which, since the soliton is supported by the P

mode, is taken to be Gaussiff|. For details see Ref6]. Voln(1+ 7€)
Note that our investigation has shown that soliton solu- F3(\Ifo)=f —_—

tions in the given model exist only if one of the dopants is 0 3

defocusing. Hence we have taken the third dopant with nega-

tive Kerr coefficienm‘23), which has resulted in the negative NUMERICAL RESULTS AND DISCUSSION

sign beforee in Eq. (7).

dé. (14)

For a given set of parametess vy, €, andy, and a given
SOLITON SOLUTION initial amplitudeW¥ ; we first determine the soliton shape by
numerically integrating Eq12) and then calculate the power

We look for the fundamental soliton solutions of E6) P of the soliton solution according to the formyl2y]
in the form

a(£,7) = VT (Dexii BE), (10 P f “"’h, 15
.

satisfying the boundary conditions

lim ¥(7)= lim [d¥(7)/d7]=0. (1) where

7l —e 7l —e

The parameteB has the meaning of a nonlinear propagation E(l)= = 'f Ddl 16
constant shift. Using this form of the soliton solution we (h= I Jo (ha. (16)
obtain from Eqs(6), (7), and(10) the ordinary differential

equation for¥(7), The results are shown in Fig. 1, where we have ploRegs

a function of 8 for a certain choice of parameters. It is clear

v (w2 L e In(1+ W) from Fig. 1 thatP(8) becomesN shaped, i.e., multivalued

— (1B | = —| - —— (for a range ofe when u, y,, and vy, are fixed and for a

4V g2 Y1 72 v given value ofP there are three values gffor which soliton
solutions exist. We also notice in Fig. 1 that if for a fixed set

c 0 (12) (m,7v1,7v2) we increase the value of, the powerP(p3) is
7V 73V

initially a single-valued function of8 (curvea with €e=1.75

and curveb with e=1.8) showing no bistability, but then
Here the prime stands for the ordinary derivative with re-becomedN shapedcurvec with e=1.805) with the onset of
spect tor. bistability. A further increase i results in the appearance
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FIG. 1. Soliton poweP vs nonlinear propagation constaifor FIG. 2. Soliton solution¥(7) for y,=5, y,=1.5, u=1.5, and

71=5, 7,=1.5, u=1.5, ande=1.78(curvea), e=1.8(curveb),  ._1805 coresponding to curve of Fig. 1. Solution a
€=1.805(curvec), e=1.81(curved), ande=1.815(curvee). (B=0.030 124) and solution (3=0.032 537) belong to the lower

and upper positive slope branches, respectivelyR(@8). Solution
b (8=0.0304715) belongs to the negative slope branck (@)

of a pole inP(p) at certaing values, which depend on the . 4is unstable.

parameters(curve d with €=1.81 and curvee with
e=1.82).

The pole is associated with an interval'\Bf, for which no
soliton solution exists due to the defocusing action of the ) ) ) o
third dopant. For example, in Fig. 1 this gap of missing soli-Peak intensity of 352 MW/crh These values lie well within
ton solutions exists for curvess ande and, in fact, this gap the experimentally accessible and technologically useful
exists for all values of the parameterbeyond a critical range.
value, say,e.. From an experimental point of view, fibers ~ We have studied soliton solutions of E@) for a wide
with material properties corresponding to cutvbave quite  range of the parameters. Our analysis shows that in the given
different characteristics from fibers corresponding to cutve averaged model bistable solitons exist for those values of the
or e. In the first case, bistability is encountered only in aparameters for which the nonlinear functiof(l) is
finite interval of soliton power, in spite of the fact that soli- N-shaped. The corresponding integrated functid) can
ton solutions exist for all value of peak intensity and solitonbe either monotonic oN-shaped. This behavior is different
pulse widths are bounded. In the second case, i.e., for curvégm the case of the unaveraged model of R&f, where a
d ande, with € above the critical value,, bistable solitons sharp increase irf(l) is responsible for the existence of
exist only for powers above a certain threshold and the lowepistable solitons. We would like to note here that the aver-
and upper stable branches are separated by an interval ghed model as considered here does not display bistability
peak intensities, for which no soliton solutions can be ob-orresponding to the case of a sharp increase in the nonlinear
tained. Also, the soliton pulse width increases sharply whemynction f. This might be related to the fact mentioned ear-
we approach the pole from below along the lower stablgjgr that averaging changes the form of the nonlinear function
soliton branch. Note that this situation corresponds 10 thgyqqe gerivative is crucial for the existence of bistability.
phenomenon of so-called discontinuous solitons predlctesg\n extensive search scanning through a large range of the

recently by Snydeet al.[7]. : ; 10—
4 . . " arameters, y,, andy, including the case of’ (0)=0 and
The soliton solutions corresponding to the positive slopéf),,(o):O (similar to Ref.[1]) could not yield a positive re-

branch of theP(B) curve satisfy the stability criteriof2]

given bydP/dB>0 and are stable, while those correspond—su“'
ing to the negative slope branch are unstable. For illustration
we have depicted the soliton shapes in Fig. 2 corresponding

to all three branches of the(8) curve fory;=5, y,=1.5, CONCLUSION
u=15, ande=1.805. All these solutions have the same
power equal to 75. The solutions of Figap corresponding We have obtained and studied bistable solitons in the av-

to 8=0.030123 4, and Fig. (), with 8=0.03253, are eraged model of triply doped fibers with nonlinear saturation
stable, while the solution of Fig. (B), corresponding to in the refractive index of the core. The soliton solutions have
B=0.030 4715, is unstable. Inserting typical figures for thethe same power, but different shapes corresponding to differ-
fiber parameters [6,8,9 [A=1.55um, ny=1.44, ent values of the nonlinear propagation constaras pre-
n{Y=2x10" cm?Ww, I (M=200 MW/cn?, andk,,,=—27  dicted by Kaplan[2]. Two stable branches of solitons are
(p9) 2/km] into the rescaling equatio(8), we find that one separated by an unstable branch as required for switching
unit of the variabler corresponds to a time interval of ap- from one bistable state to the otfj&0]. We have shown that
proximately 13 ps. Thus, in the given example the uppembistable solitons can exist without requiring the specific be-
branch soliton has &ull width at half maximum of 215 fs  havior of a sharp increase in the nonlinear functich).

and a peak intensity of .= qzmaxl g1)=789 MW/cn?, Also we have shown the existence of the so-called discon-
while the lower branch soliton has a width of 568 fs and atinuous solitons in a realistic model.
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