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Soliton bistability in triply doped fiber with saturating nonlinearity
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Bistable, in the sense of Kaplan@Phys. Rev. Lett.55 1291~1985!#, soliton solutions are obtained and studied
in the averaged model of the triply doped fiber with saturating nonlinearity.@S1063-651X~97!10010-1#

PACS number~s!: 42.81.2i
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INTRODUCTION

Recently, Enns and Edmundson@1# obtained and studied
the properties of bistable~in the sense of Kaplan@2#! solitons
in a triply doped fiber with saturating nonlinearity. In the
work the saturation coefficients of the dopants are rela
among themselves in a stringent manner in order to fulfill
necessary properties~put forth by Enns, Rangnekar, and K
plan @3#! of the nonlinear functionf (I ), I being the light
intensity, in the evolution equation. In addition to that, t
pulse evolution equation used by them is an unaveraged
which is not desirable since the transverse distribution of
modal field in the fiber is not uniform over the entire cro
section. Because averaging changes the form of the nonli
function f (I ) @4,5# and according to Kaplan@2# the existence
of bistable solitons crucially depends on the derivative
f (I ) it becomes necessary to study the averaged model.

Consider a monomode fiber with circular cross secti
Let z be the direction along the fiber. The nonlinear wa
equation in the core region of the fiber can be written as

¹W 2EW 2
1

c2

]2DW L

]t2
5

1

c2

]2DW NL

]t2
, ~1!

where DW L and DW NL are the linear and the nonlinear par
respectively, of the electric induction vectorDW . DW L is given
by

DW L5E
0

`

«~ t8!EW ~ t2t8!dt8, ~2!

while

DW NL5«NL~ uEW u2!EW , ~3!

where« is the linear permittivity and«NL is the intensity-
dependent nonlinear permittivity. As in the case of a sin
dopant, for the given case of a triply doped fiber, we take
nonlinear permittivity in the form

«NL~ uEW u2!5(
j 51
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where«2
( j ) ( j 51,2,3) are the Kerr coefficients for the non

linear permittivity of the dopants related to the respect
Kerr coefficients for the nonlinear refractive index change
the dopants by@5# «2

( j )52n0n2
( j ) , n0 being the linear refrac-

tive index of the fiber core. HereI s
( j ) ( j 51,2,3) are the satu

ration intensities of the dopants. Note that the intensitiesI s
( j )

have to be given in V2/m2, with the corresponding units fo
n2 and«2 while calculating the physical quantities related
the soliton pulse.

As usual we represent the electric-field envelope am
tude in the form

EW ~x,y,z,t !5eWR~rW !A~z,t !exp@2 i ~v0t2b0z!#, ~5!

whereeW is the unit vector in the direction of polarization,v0

is the carrier frequency,b0 is the propagation constant,R(rW)
is the mode function giving the transverse distribution of t
field in the mode, andA(z,t) is the slowly varying complex
envelope amplitude of the pulse. In order to derive the d
ferential equation governing pulse propagation in the m
dium described by Eqs.~2!–~4! we adopt the customary
slowly varying envelope approximation~SVEA!. Further, as-
suming the temporal dispersion of the dielectric permittiv
to be small, we expand the electric fieldEW (t2t8) in Eq. ~2!
into a Taylor series int8 @6# and use the resulting expressio
to obtain the required series forDW L(t). We then differentiate
this new expression ofDW L(t) twice with respect tot to obtain
]2DW L/]t2. We also differentiateDW NL(t) twice to obtain
]2DW NL/]t2. Now substituting forEW @taking into account Eq.
~5!#, ]2DW L/]t2, and]2DW NL/]t2 in Eq. ~1!, using the condi-
tion of the SVEA@6#, and averaging the resulting equatio
over the fiber cross section we arrive at the dimension
evolution equation for the normalized complex envelope a
plitude q(j,t),

iqj1
1

2
qtt1 f ~ uqu2!q50, ~6!

where
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f ~ uqu2!512
ln~11uqu2!

uqu2
1

m

g1
S 12

ln~11g1uqu2!

g1uqu2 D
2

e

g2
S 12

ln~11g2uqu2!

g2uqu2
D . ~7!

The dimensionless variables in Eqs.~6! and~7! are given by

q5
A

AI s
~1!

, j5
vn2

~1!I s
~1!

c
z,

t5Avn2
~1!I s

~1!

c~2kvv!S t2
z

vg
D ~8!

and

m5
n2

~2!

n2
~1!

, g15
I s

~1!

I s
~2!

, e5
un2

~3!u

n2
~1!

, g25
I s

~1!

I s
~3!

. ~9!

The averaging is done by taking the first moment of
differential equation, obtained after the above-mention
substitutions, with respect to the transverse field distribut
R(rW), which, since the soliton is supported by the LP01
mode, is taken to be Gaussian@7#. For details see Ref.@6#.

Note that our investigation has shown that soliton so
tions in the given model exist only if one of the dopants
defocusing. Hence we have taken the third dopant with ne
tive Kerr coefficientn2

(3) , which has resulted in the negativ
sign beforee in Eq. ~7!.

SOLITON SOLUTION

We look for the fundamental soliton solutions of Eq.~6!
in the form

q~j,t!5AC~t!exp~ ibj!, ~10!

satisfying the boundary conditions

lim
utu→`

C~t!5 lim
utu→`

@]C~t!/]t#50. ~11!

The parameterb has the meaning of a nonlinear propagati
constant shift. Using this form of the soliton solution w
obtain from Eqs.~6!, ~7!, and ~10! the ordinary differential
equation forC(t),

C9

4C
2

~C8!2

8C2
1~12b!1S m

g1
2

e

g2
D2

ln~11C!

C

2m
ln~11g1C!

g1
2C

1e
ln~11g2C!

g2
2C

50. ~12!

Here the prime stands for the ordinary derivative with
spect tot.
e
d
n

-

a-

-

In order to obtain the soliton solution for the given initi
conditionsC0[C(t50) anddC/dt50 at t50 we have
to integrate Eq.~12! for a given set of parametersg1 , m, g2 ,
ande. The nonlinear addition to the propagation constantb,
required for the integration of Eq.~12!, is obtained by taking
into account the first integral of Eq.~12! and the boundary
conditions~11!:

b511
m

g1
2

e

g2
2

1

C0
FF1~C0!1

m

g1
2

F2~C0!

2
e

g2
2

F3~C0!G , ~13!

where

F1~C0!5E
0

C0ln~11j!

j
dj,

F2~C0!5E
0

C0ln~11g1j!

j
dj,

F3~C0!5E
0

C0ln~11g2j!

j
dj. ~14!

NUMERICAL RESULTS AND DISCUSSION

For a given set of parametersm, g1, e, andg2 and a given
initial amplitudeAC0 we first determine the soliton shape b
numerically integrating Eq.~12! and then calculate the powe
P of the soliton solution according to the formula@2#

P5E
0

C0 dI

A2@b2F~ I !#
, ~15!

where

F~ I !5
1

I E0

I

f ~ I !dI. ~16!

The results are shown in Fig. 1, where we have plottedP as
a function ofb for a certain choice of parameters. It is cle
from Fig. 1 thatP(b) becomesN shaped, i.e., multivalued
~for a range ofe when m, g1 , andg2 are fixed! and for a
given value ofP there are three values ofb for which soliton
solutions exist. We also notice in Fig. 1 that if for a fixed s
(m,g1 ,g2) we increase the value ofe, the powerP(b) is
initially a single-valued function ofb ~curvea with e51.75
and curveb with e51.8) showing no bistability, but then
becomesN shaped~curvec with e51.805) with the onset of
bistability. A further increase ine results in the appearanc
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of a pole inP(b) at certainb values, which depend on th
parameters~curve d with e51.81 and curvee with
e51.82).

The pole is associated with an interval ofC0 for which no
soliton solution exists due to the defocusing action of
third dopant. For example, in Fig. 1 this gap of missing so
ton solutions exists for curvesd ande and, in fact, this gap
exists for all values of the parametere beyond a critical
value, say,ec . From an experimental point of view, fiber
with material properties corresponding to curvec have quite
different characteristics from fibers corresponding to curvd
or e. In the first case, bistability is encountered only in
finite interval of soliton power, in spite of the fact that so
ton solutions exist for all value of peak intensity and solit
pulse widths are bounded. In the second case, i.e., for cu
d ande, with e above the critical valueec , bistable solitons
exist only for powers above a certain threshold and the lo
and upper stable branches are separated by an interv
peak intensities, for which no soliton solutions can be o
tained. Also, the soliton pulse width increases sharply w
we approach the pole from below along the lower sta
soliton branch. Note that this situation corresponds to
phenomenon of so-called discontinuous solitons predic
recently by Snyderet al. @7#.

The soliton solutions corresponding to the positive slo
branch of theP(b) curve satisfy the stability criterion@2#
given bydP/db.0 and are stable, while those correspon
ing to the negative slope branch are unstable. For illustra
we have depicted the soliton shapes in Fig. 2 correspon
to all three branches of theP(b) curve forg155, g251.5,
m51.5, ande51.805. All these solutions have the sam
power equal to 75. The solutions of Fig. 2~a!, corresponding
to b50.030 123 4, and Fig. 2~c!, with b50.032 53, are
stable, while the solution of Fig. 2~b!, corresponding to
b50.030 471 5, is unstable. Inserting typical figures for t
fiber parameters @6,8,9# @l51.55mm, n051.44,
n2

(1)52310213 cm2/W, I s
(1)5200 MW/cm2, andkvv5227

~ps! 2/km# into the rescaling equation~8!, we find that one
unit of the variablet corresponds to a time interval of ap
proximately 13 ps. Thus, in the given example the up
branch soliton has a~full width at half maximum! of 215 fs
and a peak intensity ofI max5qmax

2 I s
(1)5789 MW/cm2,

while the lower branch soliton has a width of 568 fs and

FIG. 1. Soliton powerP vs nonlinear propagation constantb for
g155, g251.5, m51.5, ande51.78 ~curvea), e51.8 ~curveb),
e51.805~curvec), e51.81 ~curved), ande51.815~curvee).
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peak intensity of 352 MW/cm2. These values lie well within
the experimentally accessible and technologically use
range.

We have studied soliton solutions of Eq.~6! for a wide
range of the parameters. Our analysis shows that in the g
averaged model bistable solitons exist for those values of
parameters for which the nonlinear functionf (I ) is
N-shaped. The corresponding integrated functionF(I ) can
be either monotonic orN-shaped. This behavior is differen
from the case of the unaveraged model of Ref.@1#, where a
sharp increase inf (I ) is responsible for the existence o
bistable solitons. We would like to note here that the av
aged model as considered here does not display bistab
corresponding to the case of a sharp increase in the nonli
function f . This might be related to the fact mentioned ea
lier that averaging changes the form of the nonlinear funct
whose derivative is crucial for the existence of bistabili
An extensive search scanning through a large range of
parametersm, g1, andg2 including the case off 8(0)50 and
f 9(0)50 ~similar to Ref.@1#! could not yield a positive re-
sult.

CONCLUSION

We have obtained and studied bistable solitons in the
eraged model of triply doped fibers with nonlinear saturat
in the refractive index of the core. The soliton solutions ha
the same power, but different shapes corresponding to dif
ent values of the nonlinear propagation constantb as pre-
dicted by Kaplan@2#. Two stable branches of solitons a
separated by an unstable branch as required for switc
from one bistable state to the other@10#. We have shown tha
bistable solitons can exist without requiring the specific b
havior of a sharp increase in the nonlinear functionf (I ).
Also we have shown the existence of the so-called disc
tinuous solitons in a realistic model.

FIG. 2. Soliton solutionC(t) for g155, g251.5, m51.5, and
e51.805 corresponding to curvec of Fig. 1. Solution a
(b50.030 124) and solutionc (b50.032 537) belong to the lowe
and upper positive slope branches, respectively, ofP(b). Solution
b (b50.030 471 5) belongs to the negative slope branch ofP(b)
and is unstable.



.

s.

E.

56 6199BRIEF REPORTS
@1# R. H. Enns and D. E. Edmundson, Phys. Rev. A47, 4524
~1993!.

@2# A. E. Kaplan, Phys. Rev. Lett.55, 1291~1985!.
@3# R. H. Enns, S. S. Rangnekar, and A. E. Kaplan, Phys. Rev

35, 466 ~1987!.
@4# Ajit Kumar and Atul Kumar, Opt. Commun.125, 377 ~1996!.
@5# Ajit Kumar, T. Kurz, and W. Lauterborn, Phys. Rev. E53,

1166 ~1996!.
@6# Ajit Kumar, Phys. Rep.187, 63 ~1990!.
A

@7# A. W. Snyder, D. J. Mitchell, and Y. S. Kivshar, Mod. Phy
Lett. B 9, 1479~1995!.

@8# G. I. Stegeman and R. H. Stolen, J. Opt. Soc. Am. B6, 652
~1989!.

@9# G. I. Stegeman, inContemporary Nonlinear Optics, edited by
G. P. Agrawal and R. W. Boyd~Academic, Boston, 1992!, pp.
1–40.

@10# R. H. Enns, D. E. Edmundson, S. S. Rangnekar, and A.
Kaplan, Opt. Lett.14, 456 ~1989!.


